逻辑回归 Logistics Regression 两种分类实例(Matlab)

目录

序言

无正则化

1、主函数:

2、sigmoid函数

3、plotData绘图

4、costFunction代价函数

5、predict预测函数

6、submit函数

正则化

1、主函数

2、plotData绘图结果展示

2、costFunctionReg代价函数

3、plotDecisionBoundary函数

 4、mapFeature函数

5、说明 


序言

        逻辑回归是解决分类问题的一种分类器,是在线性回归的基础上进行了非线性的调整,即引入了sigmoid函数。虽说是对线性回归的调整,但是并不是说二者均是解决同一类问题,线性回归解决的是预测问题,其代价函数是采用最小二乘法进行求解,而逻辑回归的代价函数则是引入了概率的思想。有关逻辑回归的详细内容请参考如下介绍,博客内容仅供参考,如有不当之处欢迎大家在评论区批评指正。

无正则化

1、主函数:

        首先、关于逻辑回归的模型如下图所示。输入的每一项与对应权重相乘,得到的结果进入sigmoid函数进行非线性处理,将输出限制在(0,1)范围内。再利用输出值和实际值求出代价函数,再对代价函数求偏导求解出梯度grad进而更新权重theta。

%% Machine Learning Online Class - Exercise 2: Logistic Regression
%
%  Instructions
%  ------------
% 
%  This file contains code that helps you get started on the logistic
%  regression exercise. You will need to complete the following functions 
%  in this exericse:
%
%     sigmoid.m
%     costFunction.m
%     predict.m
%     costFunctionReg.m
%
%  For this exercise, you will not need to change any code in this file,
%  or any other files other than those mentioned above.
%
%% Initialization
clear ; close all; clc
%% Load Data
%  The first two columns contains the exam scores and the third column
%  contains the label.
data = load ('ex2data1.txt');
% X = data(:,[1,2]);
% y = data(:,3);
X = data(:,[1,2])';
y = data(:,3)';
%X = data(:, [1, 2]); y = data(:, 3);
%% ==================== Part 1: Plotting ====================
%  We start the exercise by first plotting the data to understand the 
%  the problem we are working with.
fprintf(['Plotting data with + indicating (y = 1) examples and o ' ...
         'indicating (y = 0) examples.\n']);
plotData(X, y);
% Put some labels 
hold on;
% Labels and Legend
xlabel('Exam 1 score')
ylabel('Exam 2 score')
% Specified in plot order
legend('Admitted', 'Not admitted')
hold off;
fprintf('\nProgram paused. Press enter to continue.\n');
pause;
%% ============ Part 2: Compute Cost and Gradient ============
%  In this part of the exercise, you will implement the cost and gradient
%  for logistic regression. You neeed to complete the code in 
%  costFunction.m
%  Setup the data matrix appropriately, and add ones for the intercept term
[m, n] = size(X);
% Add intercept term to x and X_test
X = [ones(1, n) ;X];%加偏置项
 %Y = [y0;y1;y2;.......]
% Initialize fitting parameters
initial_theta = zeros(1,m + 1);%初始化 偏置项置为全0   1 X n+1 
% Compute and display initial cost and gradient
[cost, grad] = costFunction(initial_theta, X, y);
fprintf('Cost at initial theta (zeros): %f\n', cost);
fprintf('Expected cost (approx): 0.693\n');
fprintf('Gradient at initial theta (zeros): \n');
fprintf(' %f \n', grad);
fprintf('Expected gradients (approx):\n -0.1000\n -12.0092\n -11.2628\n');
% Compute and display cost and gradient with non-zero theta
test_theta = [-24,0.2,0.2];
[cost, grad] = costFunction(test_theta, X, y);
fprintf('\nCost at test theta: %f\n', cost);
fprintf('Expected cost (approx): 0.218\n');
fprintf('Gradient at test theta: \n');
fprintf(' %f \n', grad);
fprintf('Expected gradients (approx):\n 0.043\n 2.566\n 2.647\n');
fprintf('\nProgram paused. Press enter to continue.\n');
pause;
%% ============= Part 3: Optimizing using fminunc  =============
%  In this exercise, you will use a built-in function (fminunc) to find the
%  optimal parameters theta.
%  Set options for fminunc
options = optimset('GradObj', 'on', 'MaxIter', 400);
%  Run fminunc to obtain the optimal theta
%  This function will return theta and the cost 
[theta, cost] = ...
	fminunc(@(t)(costFunction(t, X, y)), initial_theta, options);
% Print theta to screen
fprintf('Cost at theta found by fminunc: %f\n', cost);
fprintf('Expected cost (approx): 0.203\n');
fprintf('theta: \n');
fprintf(' %f \n', theta);
fprintf('Expected theta (approx):\n');
fprintf(' -25.161\n 0.206\n 0.201\n');
% Plot Boundary
plotDecisionBoundary(theta, X, y);
% Put some labels 
hold on;
% Labels and Legend
xlabel('Exam 1 score')
ylabel('Exam 2 score')
% Specified in plot order
legend('Admitted', 'Not admitted')
hold off;
fprintf('\nProgram paused. Press enter to continue.\n');
pause;
%% ============== Part 4: Predict and Accuracies ==============
%  After learning the parameters, you'll like to use it to predict the outcomes
%  on unseen data. In this part, you will use the logistic regression model
%  to predict the probability that a student with score 45 on exam 1 and 
%  score 85 on exam 2 will be admitted.
%
%  Furthermore, you will compute the training and test set accuracies of 
%  our model.
%
%  Your task is to complete the code in predict.m
%  Predict probability for a student with score 45 on exam 1 
%  and score 85 on exam 2 
prob = sigmoid([1 45 85] * theta');
fprintf(['For a student with scores 45 and 85, we predict an admission ' ...
         'probability of %f\n'], prob);
fprintf('Expected value: 0.775 +/- 0.002\n\n');
% Compute accuracy on our training set
p = predict(theta, X);
fprintf('Train Accuracy: %f\n', mean(double(p == y)) * 100);
fprintf('Expected accuracy (approx): 89.0\n');
fprintf('\n');

        初始化theta为0的时候计算代价和梯度结果如下所示,红色为实验所得结果,蓝色为参考值。

         分类结果示意图如下所示:

         正确率为:

2、sigmoid函数

        sigmoid函数也称激活函数,当一个神经元的激活函数是一个 Sigmoid函数时,这个单元的输出保证总是介于0和1之间。此外,由于 Sigmoid是一个非线性函数,这个单元的输出将是一个非线性函数的加权和的输入。这种以Sigmoid函数为激活函数的神经元被称为sigmoid unit ,其图像如下图所示。

function g = sigmoid(z)
%SIGMOID Compute sigmoid function
%   g = SIGMOID(z) computes the sigmoid of z.
% You need to return the following variables correctly 
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the sigmoid of each value of z (z can be a matrix,
%               vector or scalar).
g=1 ./ (1 + exp(-z));
% =============================================================
end

3、plotData绘图

        关于plotData函数,需要先对数据进行处理。根据标签将数据集处理,利用find函数找出对应类别数据集的索引下标将数据集分为pos和neg两类,最后绘制两类数据的图像,如下图所示。

function plotData(X, y)
%PLOTDATA Plots the data points X and y into a new figure 
%   PLOTDATA(x,y) plots the data points with + for the positive examples
%   and o for the negative examples. X is assumed to be a Mx2 matrix.
% Create New Figure
figure; hold on;
% ====================== YOUR CODE HERE ======================
% Instructions: Plot the positive and negative examples on a
%               2D plot, using the option 'k+' for the positive
%               examples and 'ko' for the negative examples.
%
%data数据说明:第一列横坐标,第二列纵坐标,第三列标签标志(1:pos;2:neg)
%找出y = 0和1的下标 (y为标签标志)
pos= find(y==1);
neg = find(y==0);
%画出对应点(x,y)
plot(X(1,pos), X(2,pos), 'k+','LineWidth', 2, 'MarkerSize', 7);
plot(X(1,neg), X(2,neg), 'ko', 'MarkerFaceColor', 'y', 'MarkerSize', 7);
% plot(X(1,pos), X(2,pos), 'k+','LineWidth', 2, 'MarkerSize', 7);
% plot(X(1,neg), X(2,neg), 'ko', 'MarkerFaceColor', 'y', 'MarkerSize', 7);
% =========================================================================
hold off;
end

4、costFunction代价函数

        代价函数,其特点是:实际值为 1 且预测值也为 1 时误差为 0 ,当实际值为 1 预测值不为1时,误差随预测值减小而增大。当实际值为 0 且预测值也为 0 时,误差为 0 ,当实际值为 0 但预测值不为 0 时,误差随预测值增大而增大,此过程可以参考sigmoid函数图像理解。

        计算过程也较为简单,只需求出预测值h_theta,带入如下公式即可得出代价J。得到J后,我们便可以通过梯度下降法求出梯度grad。

        有关如何求导便不在此过多介绍,有兴趣的可以自行推导。

        无正则化的代价函数部分,并没有易错点,不过在编写代码的时候仍需注意,避免粗心导致报错。

function [J, grad] = costFunction(theta, X, y)
%COSTFUNCTION Compute cost and gradient for logistic regression
%   J = COSTFUNCTION(theta, X, y) computes the cost of using theta as the
%   parameter for logistic regression and the gradient of the cost
%   w.r.t. to the parameters.
% Initialize some useful values
m = length(y); % number of training examples
% You need to return the following variables correctly 
% J = 0;
% grad = zeros(size(theta));
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta.
%               You should set J to the cost.
%               Compute the partial derivatives and set grad to the partial
%               derivatives of the cost w.r.t. each parameter in theta
%
% Note: grad should have the same dimensions as theta
h_theta = sigmoid(theta*X);
J = -sum(y.*log(h_theta)+(1-y).*log((1-h_theta)))/m;
%%%%%%%%%%%%%%%%%方法二%%%%%%%%%%%%%%%%%%
%不用sum 矩阵乘法包含有求和,可以不需要sum 和点乘的方式;因此将y = y';
% y = y';%100 * 1    log(h_theta)  1*100
% J = -(log(h_theta)*y+log((1-h_theta))*(1-y))/m;
%%%%%%%%%%%%%%%%二者时间复杂度比较??????%%%%%%%  
grad = sum((h_theta-y).*X,2)/m;
%更新theta
% theta = theta - alpha.*grad;
% =============================================================
end

5、predict预测函数

预测函数,即先根据预测值对预测输出的数据集进行分类,分类标准即sigmoid函数的区分标准,以0.5为界,大于0.5则判为1,小于0.5判为0。此过程之后,我们便可得到数据集的逻辑输出,非真实的线性组合输出,经过sigmoid函数后,输出值便变成了逻辑值中的0和1,这可以看出逻辑回归实际上是一个分类器,而非做预测。

function p = predict(theta, X)
%PREDICT Predict whether the label is 0 or 1 using learned logistic 
%regression parameters theta
%   p = PREDICT(theta, X) computes the predictions for X using a 
%   threshold at 0.5 (i.e., if sigmoid(theta'*x) >= 0.5, predict 1)
% m = size(X, 1); % Number of training examples
% 
% % You need to return the following variables correctly
% p = zeros(m, 1);
% ====================== YOUR CODE HERE ======================
% Instructions: Complete the following code to make predictions using
%               your learned logistic regression parameters. 
%               You should set p to a vector of 0's and 1's
%
Matrix = sigmoid(theta*X);
num_cols= size(Matrix,2);
for i = 1 : num_cols
    if Matrix(1,i)>=0.5
        p(i) = 1;
    else
        p(i) = 0;
    end
end
% =========================================================================
end

6、submit函数

function submit()
  addpath('./lib');
  conf.assignmentSlug = 'logistic-regression';
  conf.itemName = 'Logistic Regression';
  conf.partArrays = { ...
    { ...
      '1', ...
      { 'sigmoid.m' }, ...
      'Sigmoid Function', ...
    }, ...
    { ...
      '2', ...
      { 'costFunction.m' }, ...
      'Logistic Regression Cost', ...
    }, ...
    { ...
      '3', ...
      { 'costFunction.m' }, ...
      'Logistic Regression Gradient', ...
    }, ...
    { ...
      '4', ...
      { 'predict.m' }, ...
      'Predict', ...
    }, ...
    { ...
      '5', ...
      { 'costFunctionReg.m' }, ...
      'Regularized Logistic Regression Cost', ...
    }, ...
    { ...
      '6', ...
      { 'costFunctionReg.m' }, ...
      'Regularized Logistic Regression Gradient', ...
    }, ...
  };
  conf.output = @output;
  submitWithConfiguration(conf);
end
function out = output(partId, auxstring)
  % Random Test Cases
  X = [ones(20,1) (exp(1) * sin(1:1:20))' (exp(0.5) * cos(1:1:20))'];
  y = sin(X(:,1) + X(:,2)) > 0;
  if partId == '1'
    out = sprintf('%0.5f ', sigmoid(X));
  elseif partId == '2'
    out = sprintf('%0.5f ', costFunction([0.25 0.5 -0.5]', X, y));
  elseif partId == '3'
    [cost, grad] = costFunction([0.25 0.5 -0.5]', X, y);
    out = sprintf('%0.5f ', grad);
  elseif partId == '4'
    out = sprintf('%0.5f ', predict([0.25 0.5 -0.5]', X));
  elseif partId == '5'
    out = sprintf('%0.5f ', costFunctionReg([0.25 0.5 -0.5]', X, y, 0.1));
  elseif partId == '6'
    [cost, grad] = costFunctionReg([0.25 0.5 -0.5]', X, y, 0.1);
    out = sprintf('%0.5f ', grad);
  end 
end

正则化

       有关正则化过拟合欠拟合问题将在后续博客中讨论,本文仅讨论如何对代价函数进行正则化。

1、主函数

%% Machine Learning Online Class - Exercise 2: Logistic Regression
%
%  Instructions
%  ------------
%
%  This file contains code that helps you get started on the second part
%  of the exercise which covers regularization with logistic regression.
%
%  You will need to complete the following functions in this exericse:
%
%     sigmoid.m
%     costFunction.m
%     predict.m
%     costFunctionReg.m
%
%  For this exercise, you will not need to change any code in this file,
%  or any other files other than those mentioned above.
%
%% Initialization
clear ; close all; clc
%% Load Data
%  The first two columns contains the X values and the third column
%  contains the label (y).
data = load('ex2data2.txt');
X = data(:, [1, 2])'; y = data(:, 3)';
plotData(X, y);
% Put some labels
hold on;
% Labels and Legend
xlabel('Microchip Test 1')
ylabel('Microchip Test 2')
% Specified in plot order
legend('y = 1', 'y = 0')
hold off;
%% =========== Part 1: Regularized Logistic Regression ============
%  In this part, you are given a dataset with data points that are not
%  linearly separable. However, you would still like to use logistic
%  regression to classify the data points.
%
%  To do so, you introduce more features to use -- in particular, you add
%  polynomial features to our data matrix (similar to polynomial
%  regression).
%
% Add Polynomial Features
% Note that mapFeature also adds a column of ones for us, so the intercept
% term is handled
X = mapFeature(X(1,:), X(2,:));%已加偏置项
% Initialize fitting parameters
initial_theta = zeros(1,size(X, 1));
% Set regularization parameter lambda to 1
lambda = 1;
% Compute and display initial cost and gradient for regularized logistic
% regression
[cost, grad] = costFunctionReg(initial_theta, X, y, lambda);
fprintf('Cost at initial theta (zeros): %f\n', cost);
fprintf('Expected cost (approx): 0.693\n');
fprintf('Gradient at initial theta (zeros) - first five values only:\n');
fprintf(' %f \n', grad(1:5));
fprintf('Expected gradients (approx) - first five values only:\n');
fprintf(' 0.0085\n 0.0188\n 0.0001\n 0.0503\n 0.0115\n');
fprintf('\nProgram paused. Press enter to continue.\n');
pause;
% Compute and display cost and gradient
% with all-ones theta and lambda = 10
test_theta = ones(1,size(X,1));%1*28
[cost, grad] = costFunctionReg(test_theta, X, y, 10);
fprintf('\nCost at test theta (with lambda = 10): %f\n', cost);
fprintf('Expected cost (approx): 3.16\n');
fprintf('Gradient at test theta - first five values only:\n');
fprintf(' %f \n', grad(1:5));
fprintf('Expected gradients (approx) - first five values only:\n');
fprintf(' 0.3460\n 0.1614\n 0.1948\n 0.2269\n 0.0922\n');
fprintf('\nProgram paused. Press enter to continue.\n');
pause;
%% ============= Part 2: Regularization and Accuracies =============
%  Optional Exercise:
%  In this part, you will get to try different values of lambda and
%  see how regularization affects the decision coundart
%
%  Try the following values of lambda (0, 1, 10, 100).
%
%  How does the decision boundary change when you vary lambda? How does
%  the training set accuracy vary?
%
% Initialize fitting parameters
initial_theta = zeros(1,size(X, 1));
% Set regularization parameter lambda to 1 (you should vary this)
lambda = 1;
% Set Options
options = optimset('GradObj', 'on', 'MaxIter', 400);
% Optimize
[theta, J, exit_flag] = ...
	fminunc(@(t)(costFunctionReg(t, X, y, lambda)), initial_theta, options);
% Plot Boundary
plotDecisionBoundary(theta, X, y);
hold on;
title(sprintf('lambda = %g', lambda))
% Labels and Legend
xlabel('Microchip Test 1')
ylabel('Microchip Test 2')
legend('y = 1', 'y = 0', 'Decision boundary')
hold off;
% Compute accuracy on our training set
p = predict(theta, X);
fprintf('Train Accuracy: %f\n', mean(double(p == y)) * 100);
fprintf('Expected accuracy (with lambda = 1): 83.1 (approx)\n');

2、plotData绘图结果展示

2、costFunctionReg代价函数

        正则化处理的代价函数,需要注意的地方有两个。一个是theta0是不参与正则化的,所以在计算代价函数J的时候不应将其进算在内。第二个地方是,代价函数对theta求偏导的时候,需要分成两个部分进行:偏置项部分和剩余部分。在对偏置项的权重求偏导时,由于偏置项为常数,求偏导后无X(i)这一项。另外,值得注意的是theta0_grad的值为一个数!因此,在进行计算的时候,一定要注意各参数的维度。

function [J, grad] = costFunctionReg(theta, X, y, lambda)
%COSTFUNCTIONREG Compute cost and gradient for logistic regression with regularization
%   J = COSTFUNCTIONREG(theta, X, y, lambda) computes the cost of using
%   theta as the parameter for regularized logistic regression and the
%   gradient of the cost w.r.t. to the parameters. 
%theta 28*1====1*28   X 28*118  y 1*118
% theta = theta';
% Initialize some useful values
m = length(y); % number of training examples
% You need to return the following variables correctly 
% J = 0;
% grad = zeros(size(theta));
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta.
%               You should set J to the cost.
%               Compute the partial derivatives and set grad to the partial
%               derivatives of the cost w.r.t. each parameter in theta
% 
h_theta = sigmoid(theta*X);
%%%theta0 即偏置量权重不必正则化
%theta0_grad = sum((h_theta(1,1)-y(1,1))*X(1,:)')/m;
theta0_grad = ((h_theta-y)*X(1,:)')/m;
%theta_grad = sum((h_theta-y).*X(2:end,:)')/m +lambda.*theta(1,2:end)/m;
theta_grad = ((h_theta-y)*X(2:end,:)')/m +lambda.*theta(1,2:end)/m;
grad = [theta0_grad theta_grad];
alpha = 0.003;
theta = theta - alpha.*grad;
% grad = sum((h_theta-y).*X,2)/m ;
J = -sum(y.*log(h_theta)+(1-y).*log((1-h_theta)))/m + lambda.*sum(theta(1,2:end).^2)/(2*m);
% =============================================================
end

 结果展示,红色框线表示训练结果,蓝色框线表示参考结果。本实验所得结果与参考值差异不大,表明代码无误。

        当正则化因子为10的时候,所得的代价和梯度结果。

3、plotDecisionBoundary函数

        此函数作用就是画出边界线,用于区分两类数据。 

function plotDecisionBoundary(theta, X, y)
%PLOTDECISIONBOUNDARY Plots the data points X and y into a new figure with
%the decision boundary defined by theta
%   PLOTDECISIONBOUNDARY(theta, X,y) plots the data points with + for the 
%   positive examples and o for the negative examples. X is assumed to be 
%   a either 
%   1) Mx3 matrix, where the first column is an all-ones column for the 
%      intercept.
%   2) MxN, N>3 matrix, where the first column is all-ones
% Plot Data
plotData(X(2:3,:), y);
hold on
if size(X,1) <= 3
    % Only need 2 points to define a line, so choose two endpoints
    plot_x = [min(X(2,:))-2,  max(X(2,:))+2];
    % Calculate the decision boundary line
    plot_y = (-1./theta(1,3)).*(theta(1,2).*plot_x + theta(1,1));
    % Plot, and adjust axes for better viewing
    plot(plot_x, plot_y)
    
    % Legend, specific for the exercise
    legend('Admitted', 'Not admitted', 'Decision Boundary')
    axis([30, 100, 30, 100])
else
    % Here is the grid range
    u = linspace(-1, 1.5, 50);
    v = linspace(-1, 1.5, 50);
    z = zeros(length(u), length(v));
    % Evaluate z = theta*x over the grid
    for i = 1:length(u)
        for j = 1:length(v)
            %z(i,j) = mapFeature(u(1,i), v(1,j))*theta;%%%%%%%%%?
            w =  mapFeature(u(1,i), v(1,j));%%test  28*1
            z(i,j) = theta*mapFeature(u(1,i), v(1,j));%theta 118*1
        end
    end
    z = z'; % important to transpose z before calling contour
    % Plot z = 0
    % Notice you need to specify the range [0, 0]
    contour(u, v, z, [0, 0], 'LineWidth', 2)
end
hold off
end

 4、mapFeature函数

        此函数作用是将输入参数进行排列组合,组合出更多的特征。

function out = mapFeature(X1, X2)
% MAPFEATURE Feature mapping function to polynomial features
%
%   MAPFEATURE(X1, X2) maps the two input features
%   to quadratic features used in the regularization exercise.
%
%   Returns a new feature array with more features, comprising of 
%   X1, X2, X1.^2, X2.^2, X1*X2, X1*X2.^2, etc..
%
%   Inputs X1, X2 must be the same size
%
degree = 6;
out = ones(size(X1(1,:)));
for i = 1:degree
    for j = 0:i
        out(end+1, :) = (X1.^(i-j)).*(X2.^j);%28*?
    end
end
end

5、说明 

两个实例会用到一些共同的函数,因此在第二个实例中并未重复列出。如果需要单独的实例二的朋友,可以根据主函数中的函数按需自取。

正则化后的正确率如下: